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Abstract 
In this paper, we describe the use of a cluster as a generalized facility for development.  A 
development facility is a system used primarily for testing and development activities while being 
operated reliably for many users.  We are in the midst of a project to build and operate a large-
scale development facility.  We discuss our motivation for using clusters in this way and compare 
the model to a classic computing facility.  We describe our experiences and findings from the first 
phase of this project.  Many of these observations are relevant to the design of standard clusters 
and to future development facilities. 

1 Background 
The objective of Argonne National Laboratory’s Chiba City Project [1] is to provide a computing 
platform for development and testing of large-scale high-performance computing software while 
carrying out research in systems software (e.g., the software needed to manage and operate the 
systems and to support applications).  We have two primary motivations for this work: 

• Scalability is a fundamental goal of high-performance computing.  Much research during 
the past decade has demonstrated that the primary barrier to achieving systems scalability 
is scalability of systems software. 

• Researchers investigating paths to petaflops-capable systems in the early and mid-1990s 
identified multiple possible hardware technology paths to petascale performance.  Each 
of these hardware paths, regardless of the technology base, had one thing in common: the 
need for increasing degrees of concurrency in future systems.  Future systems are likely 
to have hundreds of thousands to millions of individual components. 

In essence, future high-end systems will be substantially larger scale than today’s systems, 
perhaps by three or more orders of magnitude.  System software, libraries, and applications must 
be able to operate effectively at this scale. 
The explosive growth of commodity-based clusters has reinforced these expectations.  Many 
institutions have demonstrated that one can effectively build very large systems out of small and 
cheap individual components.  As processor technology continues to shrink in size and cost, to 
increase in capability, and to become specialized, clusters will continue to grow in size and 
capability.  However, the scalability of systems software has not kept pace with the growth of 
clusters.  It is still true that one of the biggest challenges in the cluster computing community is 
the development of system software that scales reliably. 
One of the barriers to the development of such systems software is that facilities that support 
developing and testing at scale are rare.  The vast majority of large computers in existence are 
dedicated to computational simulation, not to development and testing.  Developers only have 
limited access and time on these systems, and any kind of development that might destabilize the 
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system (such as file system or scheduler changes) must be done with extreme care, if at all.  The 
standard batch-queue model of supercomputer scheduling is not conducive to development or 
exploration of ideas, both of which tend to require interaction.  This situation substantially limits 
the amount of research and development that can be put into scalability issues, which in turn 
tends to cause people to focus their effort in other directions.   
The first Chiba City cluster was installed in 1999 as a facility for large-scale development and 
testing in order to help address the lack of testbeds for system software developers and to promote 
research into scalability issues in all areas of high-performance computing.  Demand for the 
development capabilities of system is increasing strongly.  We are now in the process of 
designing the next generation of the facility.  In this paper, we describe our experiences and 
observations from the first phase of this project. 

2 A Development and Testbed Facility 
We designed and built Chiba City by incorporating our own experience in supporting a decade of 
research activities on a wide range of parallel platforms with the designs of other clusters and 
input from potential early users of the system.  The capabilities of the system have changed over 
time as we have come to better understand the requirements of the testbed community.  Here we 
describe the initial capabilities and features of the system that were focused on testbed activities. 

2.1 System Components 
To first order, Chiba City looks very much like a standard cluster used for computational science 
e.g. a BEOWULF system [2].  (See Figure One.)  The components of the system can be 
categorized as follows: 
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Figure 1 – Chiba City Diagram



• User nodes (256).  These nodes run the user’s “jobs”. 
• Login nodes (2).  These are the front-end nodes, with a full Linux computing 

environment.  This is where “jobs” are submitted to a scheduler. 
• Management nodes (11).  These systems manage the user nodes, but are not visible to 

the users. 
• Storage nodes (8).  These systems provide file system service to the user nodes and are 

accessible to users carrying out I/O experiments. 
• Visualization nodes (32).  These systems support graphics and visualization 

experiments. 
• Myrinet. 
• Switched fast/gigabit Ethernet. 

A more detailed description of the Chiba City environment is in [1].  In practice this system 
organization has worked fairly well. 

2.2 The Management System 
The management system has been essential to the testbed activities.  The cluster was designed 
around the concept of having a robust and reliable management system that could be used to 
manage and control the rest of the cluster. 
The physical components of the management system include: 

• The management nodes mentioned above.  These are organized hierarchically; there is 
one primary management node that controls all of the other management nodes.  Each of 
these in turn control and monitor up to thirty-two user nodes. 

• A serial console infrastructure, allowing access to all system consoles via the network.  
The management systems monitor the consoles for status and occasionally issue 
commands over the consoles. 

• A simple power control infrastructure that allows administrators to power cycle any 
hardware in the system. 

Management of the system requires a suite of software tools.  Some of these are standard systems 
administration and cluster tools from the open source community, while others were developed in 
house.  The most important of these in relation to this paper is the “ChibaDB” – a database of 
information about the cluster, including node hardware information and node software 
configuration.  When a node is rebooted or rebuilt (as described in section 4.1), the management 
system uses the database to determine which operating system to install on that node. 

2.3 System Usage 
While the cluster was to be dedicated to supporting testbed activities, we also intended to support 
computational science when cycles on the system were available.  Priorities for cluster usage 
were set in this order: 

1. Computer science researchers and developers. 
2. Computational scientists who were willing to act as testers of the potentially unstable 

system software. 
3. Computational scientists testing code at large scale. 
4. Other potential users. 

Under normal circumstances, a batch scheduler mediates access to the cluster, just as if it were a 
standard computational cluster. 



2.4 Initial Capabilities 
Based on the requirements identified by the initial users of the system, we designed a system that 
gave users the following abilities: 

• On-Demand Access:  the ability to run programs on the system without waiting in the 
batch queue.  We have supported this in a number of ways, some of which have changed 
over time. 

• Interactivity: the ability to interact with a program or the OS on a user node.  This is a 
fairly standard feature on most clusters, as it is important for debugging. 

• Root Access: having root access on one or more user nodes of a system. 
• Dynamic OS: the ability to install a non-standard operating system, or variant of a 

standard one, on one or more user nodes. 
We were able to grant root access and dynamic operating systems on the user nodes by building a 
cluster management infrastructure that could reboot and install an operating system on any user 
node in the system.  Thus, after a user completed using a set of nodes in this way, we could 
“clean up” and re-install the standard OS before allocating those nodes to the next user. 
This set of features was sufficient for the early use of the system.  However, as our understanding 
of the needs of testbed users has grown, we have modified and extended the basic requirements 
list accordingly. 

2.5 Relation to Computational Clusters 
The standard usage of a testbed cluster is similar to the usage of a computational cluster: 

• Users request resource allocations and run jobs on the resulting nodes. 
• Job runs consist of the following steps: 

o The user supplies the application and input data. 
o The user then specifies the way that the application is executed. 
o Finally, the output data produced by the application is returned to the user. 

While this high level description applies to both computational and testbed clusters, the specifics 
in both cases are substantially different.  We illustrate this using the case of a testbed user who is 
developing some aspect of an operating system and therefore installs a custom image as part of 
their activity: 
 Computational User Testbed User 
Desired resource Some number of nodes with a standard 

(and usually minimal) OS. 
Some number of nodes with a 
custom and user-specified OS. 

Application A user-mode application. An OS with custom features. 
Input Typically data sets or input parameters. Test cases to be executed. 
Output Typically some form of numerical 

result. 
Results of tests, both 
qualitative and quantitative. 

 
In essence this means that the basic job model for both uses is similar in character.  (Indeed, we 
support both types of jobs on the system, often simultaneously.)  However, the specific goals of a 
testbed user’s job are often quite different, which in turn means that the usage patterns within that 
job are different. 
 



3 Testbed Usage Characterization 
In the first days of the system, testbed usage was largely characterized by users who needed 
interactive access to a large cluster for short periods of time.  For example, scientists used the 
cluster to test systems software that launched jobs.  In this case, which is typical of much of this 
type of development, the scientists would need to use the entire system interactively, but only for 
moments at a time. 
Interestingly, the usage of the system has changed over time, both as the system has become more 
capable and as the user community of Chiba City has grown.  Recently, we have had quite a 
number of different OS and system tool developers on the system who need to install their own 
operating systems on as much of the cluster as possible.  After pushing out and configuring the 
installation, they usually run a series of tests that might take hours or days. 
We can classify testbed usage based on two metrics: 

• Degree of scalability.  This describes the degree to which the specific project is focused 
on developing and testing at large scale, or carrying out research into scalability issues. 

• Degree of system impact.  This describes the project’s ability to operate in the standard 
environment.  We have categorized these as “computational usage”, “basic 
development”, “system development”, and “extreme development”, each of which is 
described below. 

These two issues, scalability and impact, go hand in hand.  While the testbed can support high-
impact development on a single node, most high-impact testbed users are also interested in testing 
scalability issues.  Therefore, while we have found it interesting to note which of our users 
operate at large-scale, we have not found it particularly useful to differentiate between them 
based on scalability because most of the testbed users eventually want to use the entire system. 
In the following sections, we profile these broad categories of cluster users and describe the 
augmented functionality they require in order to effectively use testbed clusters.  They are 
described in order of increasing degree of system impact. 

3.1 Computational Usage 
The first type of user is a standard application user on a computational cluster. In most of these 
cases, the user has a mature application that they want to run for some period of time.  The 
operating system running on the nodes usually doesn’t matter as long as the application can be 
recompiled for the target system.  No enhanced privileges of any sort are required on any portion 
of the system.  A computational user may place significant demand on the I/O system of the 
cluster. 
The intent of a computational application user is typically to generate set of numerical results. 

3.2 Basic Development 
The second type of user, which is quite common on Chiba City, is the basic development user.  A 
good example of this type of user is a system library developer such as a numerical library or a 
communications library. 
In general, these types of programmers are interested in the scalability and performance of their 
code.  They have the following requirements, some of which were noted above: 

• On-demand access.  Waiting in a queue when actively developing can severely limit the 
effectiveness of a development session.  These users like to be in the “code/compile/test” 
loop that is common for development on unscheduled systems.  In order to address this 
issue, we took three steps: 



o Thirty-two of the nodes on the system are “unscheduled”, i.e. the scheduler does 
not control access to them.  They are available to all users at all times, and are 
specifically meant to be used as an on-demand testing area. 

o The scheduler policy was arranged to allow only very short-running jobs during 
certain business hours.  In theory, this would allow the quick jobs that 
characterize this kind of development to migrate to the front of the queue.  In 
reality we discovered that this feature was rarely used because developers didn’t 
link their development schedules to the queue policy. 

o We made it possible to easily request reserved nodes on the system for arbitrary 
amounts of time. 

• Interactive access.  In particular, interactive debugging is important for this type of 
usage.  This type of access to the nodes was enabled by default; when the scheduler 
allocates a node to a user, that user can login to that node. 

• Property Extraction in job runs.  Development users frequently want information from 
a variety of sources ranging from kernel counters to network performance data in order to 
provide insight into execution and performance 

• Permission to stress the system.  Occasionally, large-scale development and testing will 
tax the system greatly, sometimes beyond the limits of system stability.  It turns out that 
when these sorts of system instabilities occur, developers are usually interested in 
determining the root cause of the problem and may not consider the instability to be 
detrimental.  In order to support this type of activity, expectations across the user 
community must be set, i.e. users must be aware that the system will occasionally have 
instabilities as a result of user code and that this is acceptable (although not actually 
desirable). 

Typically, the intent of the basic development user is to obtain information about performance 
properties of applications.  It should be noted that, in many cases, computational users also carry 
out basic development when they are developing their computational code and generally have 
these same requirements. 

3.3 System Development 
A more demanding type of user of the system is one who carries out “system” development.  
Projects that require system development capabilities make some kind of modification to the user 
nodes or to the system itself that require some type of “cleanup” before the system can be used by 
other users. 
System developers typically have the same requirements as basic developers.  In addition, they 
have one or more of these: 

• Root Access.  Some developers, such as those developing device drivers or testing 
daemons, require privileged access on the user nodes.  On a system where root privileges 
can be assigned to users, the software state on a node can become untrustworthy. Even in 
the case where users are trusted, honest mistakes can happen, causing a configuration 
management nightmare.  In effect, when root access is granted to users, the node must be 
considered untrustworthy, and must be rebuilt when the user is complete.  One 
implication of this is that the rebuild process must be robust and efficient.  Giving root 
access to users also has security implications, which are discussed below. 

• Specialized Kernels.  In some cases, developers need a very specific kernel that may be 
different than the one installed by default on the node.  This brings up the same issues as 
root access does – the node will need to be rebuilt when the user is done. 



• Hardware Management.  Users who are working in this mode are most likely doing 
work that could crash the node.  If this takes place, the user will most likely want access 
to the hardware of the system in order to debug or restart the node.  At the present time 
on our facility, this would require that the users have access to the management 
infrastructure of the cluster – a level of access that we are not comfortable making 
generally available to users.  In practice, this situation only comes up rarely, and when it 
does, it has been possible to have a system administrator participate in the debugging 
activities.  If this becomes a bigger issue in the future, we will need to solve this in a 
more general way. 

Again, the intent of this kind of user is to carry out development and to test properties of their 
applications, such as stability and performance, rather than to generate any sort of numerical 
result. 

3.4 Extreme Development 
The “extreme” developer is one that is developing or packaging up a complete operating system, 
or is working on cluster-wide system services.  Most extreme developers have the same 
requirements as the previous types of developers, but have one or both of these objectives in 
addition: 

• User-Defined Node Software.  The user provides an operating system in some form that 
can be installed on the nodes allocated to them.  In order for this to be successful, these 
images usually need to meet certain requirements: they must be able to use the facility’s 
network, which opens up a number of issues related to node identification.  Nodes 
typically need to set up trust relationships with other nodes in the same project.  These 
issues create a number of technical challenges that are discussed in section 4.  Once the 
user is done with the nodes, they will need to be rebuilt into a standard configuration. 

• Dynamic System Services.  Some projects eventually mature to the point that they can 
be installed as a part of the cluster fabric for serious testing. Examples of such projects 
include naming services, mapping services, grid software, file systems, and so on.  In 
every case of this up to the present time, we have had the system managers of the facility 
get directly involved in the project in order to determine specific goals, testing 
procedures, and fallback plans.  Perhaps the trickiest issue here is that these types of 
activities tend to destabilize the system infrastructure, once again requiring that the user 
community have the correct expectations for system reliability. 

3.5 Hardware Development 
A final type of user in this continuum may be the hardware developer.  We have not yet had any 
hardware developers carry out development or research on our facility, but this is beginning to 
appear increasingly likely. 
Hardware-related projects might include simple testing of new network hardware at scale, 
augmenting nodes in particular ways (i.e. PIMs or other specialized processors), or trying 
alternative system management interfaces for nodes. 

3.6 Hybrid Models 
This categorization of usage models is not precisely discrete.  Potentially new approaches to 
computation and development can be carried out in this type of environment. 
For example, it is possible for someone to fine-tune an OS image that is optimized for his or her 
application, and then to carry out computation using that alternative OS image. 



4 Technical Issues 
In order to support the technical requirements described above, one must address a variety of 
issues that are not commonly faced on standard clusters.  Some of these can be solved through 
simple policy changes, for example by adjusting scheduler algorithms and by appropriately 
setting user expectations.   However, many are technical in nature. 
In the following sections, we describe the technical issues that we have encountered.  In some 
cases, we feel that we have adequately addressed these challenges in the first phase of this 
project.  In other cases, the problems are beyond the scope of our initial activities. 

4.1 Support for Arbitrary OS Images 
One of the main requirements of a development cluster, as noted above, is the capability for users 
to be able to run custom operating systems on the nodes of the cluster.  We refer generically to a 
node’s operating system and its configuration as “an image”.  The degree of image customization 
varies from user to user and may range from a changed device driver to a completely different 
OS. 
In our environment, we have decided to reinstall the standard node operating system on any node 
customized by a user, even in the simplest cases.  This has worked quite well.  We use this same 
model to rebuild nodes where users have been granted root access (because we have no idea what 
might have changed). 
This node image installation and recovery scheme has three important aspects: an image 
description mechanism, an OS installation mechanism, and a node recovery system.  Each of 
these will be described in some detail: 

4.1.1 Image Description Mechanism 
Automated operating system installation has been a common technique in the systems 
administration community for decades.  The most complicated part of this problem has turned out 
to be the description of the software to be installed on a system and the changes to be made on 
each individual system.  This is also a challenge for clusters. 
Fortunately, the systems administration community has developed a variety of configuration 
management tools and techniques, many of which can be adopted directly for use on a cluster. [3]  
Despite this activity, image description and change management remain fertile areas of potential 
research. [4,5] 
In essence, images to be installed on nodes must be described somehow.  More importantly, users 
who install their own images must also be able to describe their images, which is an activity that 
most users would prefer to avoid.  The open question in this area is how best to enable users and 
administrators to easily describe node images, which may include such complications as: 

• The node disk geometry  
• Other hardware configuration information such as network card parameters 
• The base operating system and software packages 
• Configuration changes to the base operating system 
• Pointers to external services such as naming mechanisms or file systems 
• The need to be installed on potentially different nodes over time 

We would like a general solution to this problem, but have found that two basic mechanisms have 
worked for us so far: 

• Raw Bit Installation: In this method, an administrator or a user installs an image on a 
single node.  We then take a snapshot of the bits on the node and the disk partition 



information.  We can then reconstruct an exact copy of that node on nearly any system.  
We have successfully installed both Linux and Windows operating systems using this 
method.  However, changes in hardware (i.e. devices) or the environment (i.e. servers) 
limit the effectiveness of this solution. 

• Boot Disk Installation: In this method, the user provides a boot disk that will install the 
proper bits onto disk.  The boot disk includes image configuration information that can be 
customized to each node.  That boot disk is distributed onto the cluster management 
infrastructure, and the individual nodes then boot from that boot disk.  (This process is 
similar to using Kickstart [6], and in fact we have booted nodes using Kickstart in this 
way.) 

We have found that these approaches meet the basic requirements, i.e. they can be used to allow 
users to install arbitrary images on nodes.  However, due to the complex nature of image creation, 
the cluster administrators usually need to assist with the process.  As demand on the system 
continues to grow, we are concerned that approaches of this type will not scale.   

4.1.2 OS Installation Mechanism 
The job of the operating system installation mechanism is, as one might expect, to install an 
image on a node.  The installation mechanism should be able to install an arbitrary image (i.e. any 
image built in the ways described above). 
The OS install mechanism should not rely on any hooks or infrastructure on the node itself; it 
should work if the node has no software, has a supported operating system, or is running 
mysterious user code. 
Fortunately, the industry has largely solved this problem with standard network booting 
protocols.  DHCP [7] and PXE [8] are commonly used to remotely install operating systems on 
computers over a network.  PXE, unfortunately, only works on a subset of Ethernet cards, 
however these are increasingly common. 
In addition to these standard protocols, our solution incorporates a database that maps nodes to 
desired images, making boot decisions based on the state of the system.   In some cases, we will 
install the appropriate image directly.  In others, where this is not possible, we will install a 
known reliable image that will format the local hard drive appropriately and then install the target 
image. 

4.1.3 Node Recovery System 
Once user jobs have run, nodes may have been left in an indeterminate state.  The job of the node 
recovery system is to prepare those nodes for image installation.  Because the node state is 
unknown at this point, the infrastructure for node recovery must work independently of host 
operating system support.  
As our boot management system can take over during a reboot, the simple solution is to force a 
reboot of the node.  We have implemented this with the use of network accessible power 
controllers.   
This solution works fairly well for us, however: 

• If a user were to reset the BIOS so that a network boot was not forced, the node would 
not recover correctly.  If this were done across the cluster, we would be forced to 
manually reset the BIOS on every node, which would be a real disaster. 

• We’re beginning to worry about repeatedly interrupting the power to the nodes.  This 
doesn’t seem to be the best way to treat hardware.  We would prefer to have hardware-



level reboot and power cycle control, such as exists as a management interface on some 
systems. 

4.2 Complex Infrastructure Requirements 
In many cases, developers who are working on the system are able to work on any available set of 
nodes without substantial adaptation of their code.  In general this is true for developers in the 
Basic Development and Systems Development categories.  However, some developers discover 
that they have to think carefully about adapting their project to a dynamic cluster environment.  
This is frequently the case for developers who make substantial changes to the node environment 
or are working with cluster-wide system services, i.e. Extreme Developers, and also occasionally 
an issue for others. 

4.2.1 Entire Cluster Simulation 
One of the popular uses of our facility is to test cluster operating systems and cluster management 
software.  Configuring the test environment for this kind of use takes special care.  Typically, 
these developers need to simulate an entire cluster, including management, login, storage and 
compute functionality, all within the user nodes allocated to them. 
This is more difficult than normal for two reasons: 

• The users need to map their services onto a set of basically identical systems.  The 
concept of generically mapping services onto nodes (rather than onto some hardwired test 
cluster) is usually foreign. 

• The users often need some specific hardware configuration.  This may require more disk 
space than is available (i.e. to simulate storage nodes), different network cards than the 
nodes are configured with, or different hardware arrangements (i.e. to access serial 
consoles or hardware performance data) than is possible. 

We do not have a general solution to these problems at this time.  We are leaning towards having 
a pool of “advanced capability” nodes, i.e. with extra memory, disk, and room for peripherals in 
order to address the second issue. 

4.2.2 External Infrastructure 
Some of the software under development on the cluster relies on persistent, external 
infrastructure.  Those persistent services could conceivably be installed dynamically as parts of 
that user’s “job”, but in practice are much easier to install once on some dedicated system.  These 
often help bootstrap the user’s code. 
We have two distinct examples of this: 

• When installing Windows2000 as a cluster OS environment, it is useful to have at least 
one Windows Domain Controller accessible on the cluster network, providing Windows-
specific information such as user accounts, naming, and so on. 

• In order to facilitate some of the Red Hat-based distributions that have been installed on 
the cluster, we allocated a dedicated computer to act as the Kickstart boot manager. 

The ability to provide external services on a persistent system has simplified these two 
experiences substantially. 

4.2.3 Production Integration 
In some cases, the software under development is approaching production-ready quality.  The 
next step for these projects is to try the software with real users in production mode.  The goal at 



this point is to flush out remaining bugs and understand performance issues under a real 
workload.  The logical next step is to deploy this software as part of the real cluster infrastructure. 
On our system, this has taken place with file systems, process managers, and messaging libraries.  
The system administrators of the facility installed these on the cluster itself, and these software 
versions became the default versions available for users.  At this point, the users of the cluster a 
whole (both computational and development) became the set of users testing these software 
packages. 
This process raises three issues.  First, it’s not necessarily clear that this is a good idea to do with 
all software, and the selection criteria are a bit unclear.  Second, doing this requires a great deal of 
interaction between the project developers and the cluster administrators; both parties need to buy 
in to the plan.  Finally and perhaps most importantly, the resulting instabilities can cause 
problems for all users on the cluster.  As we noted previously, it helps to warn users in advance 
that these kinds of failures are expected. 

4.3 Supporting Data Gathering in Jobs 
We have found that development users want information from a variety of sources to provide 
insight into application execution and performance.  This data includes: 

• Kernel counters 
• Hardware counters, such as cache hits, and number of instructions executed 
• Environmental data such as temperature, clock speed, etc 
• Network performance data 
• Application profiling data 

This data is accessible in locations both on and off of a user node. For this reason, the application 
cannot necessarily collect at of this data directly.  At this point, we provide the data on an ad-hoc 
basis.  A more general solution would be very helpful. 

4.4 Persistent Node Identification 
A possible characteristic of a development facility is that hardware configurations change fairly 
regularly, either as a part of testing hardware or when replacing nodes.  In our case, we’ve learned 
that we shuffle hardware far more than we had originally anticipated. 
On a system in which individual nodes are commonly moved or replaced, the issue of node 
identification becomes both important and difficult.  In this sense, “node identification” is the 
ability to permanently map a node’s physical location in the cluster to a hostname.  Knowing the 
exact physical and network location of a node (and its associated hostname) is important for 
many reasons, including: 

• The ability to locate a node when hardware problems occur. 
• The desire to track performance and reliability trends based on a persistent name 

associated with the hardware. 
• The fact that both developers and administrators occasionally need to understand the 

topology of the system, for example, when analyzing network performance 
characteristics, or when renumbering subsets of a cluster for security reasons. 

• On a development cluster, it is highly desirable to know a node’s identity before it boots 
in order to deliver the correct OS to that node. 

Knowing specifically which hardware has which network address sounds like a very simple 
problem, but it is difficult when hardware is regularly moved or changed.  Most name assignment 



schemes are based on the theory that one only assigns names once, or only assigns names 
dynamically.  Neither is true in this situation. 
The usual method for assigning names is to gather the MAC addresses of each node, associate 
those addresses with known hostnames, and then to assign them to nodes dynamically via DHCP 
or statically via some host configuration system.  On any cluster that is only installed once, MAC 
address gathering can be done by hand or via a controlled sequenced boot of each node, one by 
one. 
In a cluster with dynamic hardware configurations, a more reliable solution is to have the cluster 
infrastructure detect that hardware has changed. 
Our initial implementation of this on Chiba City used the serial console infrastructure to detect 
MAC addresses, register then in the cluster’s DHCP services, and modify the node installations as 
necessary.  This was an option because the serial console port could be used to precisely identify 
physical location of the node.  Because the serial console hooks only work on our own node 
image and not on arbitrary node images, we are now working on a more general solution that uses 
network switch sensing to detect MAC addresses. 

4.5 Node-Proof System Software 
On a system on which the user nodes may be running any kind of code, the system infrastructure 
must be able to function optimally without any dependency on those nodes.  We have found in 
particular that some scheduling and job launching software tends to rely on status information 
from daemons on the user nodes, and will hang or time-out when those nodes are unresponsive. 

4.6 Smarter Node BIOS 
Standard commodity PC BIOS systems are fairly limited.  This has caused problems for us in a 
number of ways.  We would find the following features extremely helpful: 

• Accessibility to the BIOS over the console port. 
• Operating system access to the BIOS, i.e. being able to set BIOS features in the same 

way that is possible on Solaris systems and others. 
• Enhanced monitoring capabilities. 
• A consistent approach to locking BIOS settings with a password. 

Some of these BIOS issues are being addressed by the LinuxBIOS [9] project (which also has 
other desirable features).  Unfortunately, in our case, the hardware that we are using cannot take 
full advantage of LinuxBIOS, thus we are also hoping for a wider acceptance of LinuxBIOS by 
the vendor community in order to be able to use it in the future. 

4.7 Security 
Allowing users to have root access introduces a number of complicating issues. 
The most common problem that we have faced is that someone with root may have done 
something (intentionally or not) to modify the state of the image.  As noted in section 4.1, we 
solve this by rebuilding a node from scratch after a user with root privileges has finished with it. 
Users with root access also introduce a number of security issues, particularly if there is a 
possibility that the user may be malicious: 

• Nodes user administrative control of users should not be trusted by system management 
infrastructure.  So, for example, a cluster’s NFS file systems should not be exported to 
such nodes. 



• Some standard trust-related configurations, such as cluster-internal “.rhosts” or .ssh key 
files, are no longer an option.  Nodes under the control of one user should not trust nodes 
under control of another user. 

• Users might use their nodes to launch attacks against other networked systems outside of 
the cluster.  (A cluster would make an interesting testbed for denial-of-service attacks.) 

• Users might introduce network-based attacks such as IP spoofing or network sniffing in 
order to attack some other job currently running. 

• Users may configure system services (intentionally or otherwise) such that their nodes are 
susceptible to attacks from outside. 

We have not yet addressed any of these issues yet because our user community we are quite 
familiar with that portion of our user community to whom we have granted root access, due 
largely to their need for aid with image configuration issues.  Thus, we have been able to keep an 
eye out for such activities.  However, this is becoming an increasingly important issue as our user 
community grows. 
These problems can be addressed in the following ways: 

• Nodes upon which a user has root access should be designated as “untrusted”. 
• Untrusted nodes should be easily discernable from trusted nodes in order to allow the 

management infrastructure to differentiate between the two.  In particular, they should 
have different IP addresses and hostnames than when they are trusted. 

• In order to prevent network-based attacks within the cluster, untrusted nodes should be on 
different networks from trusted nodes, and also from other groups of untrusted nodes.  
This segmentation requires the use of routers between all distinct security zones.   

• Network filters and detectors should be installed to detect attacks originating in the 
cluster and targeting the cluster.  Segregating trusted and untrusted hosts by network can 
help with these filters. 

• Clearly, any detected security problems should immediately result in the disabling of the 
associated user’s access to the cluster. 

These solutions require networking gear that can operate at both layer 2 and layer 3, perform IP 
filtering on the fly, and can be dynamically reconfigured in associate with node allocation on the 
cluster. 

5 Conclusion 
In this paper, we have described the technical challenges that we have encountered in the first 
phase of a project to build and operate a cluster in support of development and scalability 
research.  Facilities to support large-scale development and research are critical to the future rapid 
growth of HPC systems and the HPC scientific community. 
A number of the challenges in supporting this facility were solved with a robust node 
management infrastructure and with flexible system policies, but the most difficult problems, 
ranging from image description through data gathering remain.  As we add more users to the 
system and support increased functionality, it will become imperative that we solve these in a 
general way. 
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